Quantifying the sensitivity of barley seed germination to oxygen, abscisic acid, and gibberellin using a population-based threshold model.

نویسندگان

  • Kent J Bradford
  • Roberto L Benech-Arnold
  • Daniel Côme
  • Françoise Corbineau
چکیده

Barley (Hordeum vulgare L.) seeds (grains) exhibit dormancy at maturity that is largely due to the presence of the glumellae (hulls) that reduce the availability of oxygen (O2) to the embryo. In addition, abscisic acid (ABA) and gibberellins (GAS) interact with O2 to regulate barley seed dormancy. A population-based threshold model was applied to quantify the sensitivities of seeds and excised embryos to O2, ABA, and GA, and to their interactive effects. The median O2 requirement for germination of dormant intact barley seeds was 400-fold greater than for excised embryos, indicating that the tissues enclosing the embryo markedly limit O2 penetration. However, embryo O2 thresholds decreased by another order of magnitude following after-ripening. Thus, increases in both permeability of the hull to O2 and embryo sensitivity to O2 contribute to the improvement in germination capacity during after-ripening. Both ABA and GA had relatively small effects on the sensitivity of germination to O2, but ABA and GA thresholds varied over several orders of magnitude in response to O2 availability, with sensitivity to ABA increasing and sensitivity to GA decreasing with hypoxia. Simple additive models of O2-ABA and O2-GA interactions required consideration of these O2 effects on hormone sensitivity to account for actual germination patterns. These quantitative and interactive relationships among O2, ABA, and GA sensitivities provide insight into how dormancy and germination are regulated by a combination of physical (O2 diffusion through the hull) and physiological (ABA and GA sensitivities) factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying the oxygen sensitivity of seed germination using a population-based threshold model

Seeds vary widely in the sensitivity of germination to oxygen (O2) partial pressure, depending upon the species, temperature, dormancy state and physiological status of the seeds. Most analyses of the O2 sensitivity of germination have focused on final germination percentages and estimated the O2 percentage in air that is required to reduce germination to a given percentage (usually 50%). In co...

متن کامل

The Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination

Seed dormancy is one of the adaptive responses in the plant life cycle and an important agronomic trait. Reactive oxygen species (ROS) release seed dormancy and promote seed germination in several cereal crops; however, the key regulatory mechanism of ROS-mediated seed dormancy and germination remains controversial. Here, we focused on the relationship between hydrogen peroxide (a ROS) and absc...

متن کامل

Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors.

Summer annuals overwinter as seeds in the soil seed bank. This is facilitated by a cold-induced increase in dormancy during seed maturation followed by a switch to a state during seed imbibition in which cold instead promotes germination. Here, we show that the seed maturation transcriptome in Arabidopsis thaliana is highly temperature sensitive and reveal that low temperature during seed matur...

متن کامل

An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells.

Plant HVA22 is a unique abscisic acid (ABA)/stress-induced protein first isolated from barley (Hordeum vulgare) aleurone cells. Its yeast homolog, Yop1p, functions in vesicular trafficking and in the endoplasmic reticulum (ER) network in vivo. To examine the roles of plant HVA22, barley HVA22 was ectopically expressed in barley aleurone cells. Overexpression of HVA22 proteins inhibited gibberel...

متن کامل

A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination

Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consisten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 59 2  شماره 

صفحات  -

تاریخ انتشار 2008